
Aggregate G-Buffer Anti-Aliasing
in Unreal Engine 4
Louis Bavoil (Developer Technology)

Cyril Crassin (Research)

Advances in Real-Time

Rendering in Games course

4x TAA = 4x SSAA with TAA

Scene courtesy of Quixel and Epic Games

4xSSAA

Scene courtesy of Quixel and Epic Games

4xAGAA
Lighting: 4.7 -> 2.8 ms (1.7x faster)

GPU times measured on GTX 1080 @ 1080pScene courtesy of Quixel and Epic Games

Temporal Anti-Aliasing

Great increase in AA
quality [Karis 2014]

However:
• Ghosting

• Flickering

• Over-smoothing visual features
(Like specular highlights)

Needs combining with
SSAA for best quality

Ghosting

1x TAA

8xAGAA
Lighting: 9.4 -> 3.6 ms (2.6x faster)

GPU times measured on GTX 1080 @ 1080pScene courtesy of Quixel and Epic Games

AGAA: Aggregate G-Buffer Anti-Aliasing

Decouples shading rate
from the G-buffer sample
count

• Using dynamic pre-filtering

• Rasterize at 4x or 8x
MSAA/SSAA

• Light at most 2x /pixel

2x AGAA8x SupersamplingSingle-sampled

I3D 2015 + TVCG16
Cyril Crassin, Morgan McGuire,

Kayvon Fatahalian, Aaron Lefohn

Pre-filtering, Supersampling, Post-filtering
• Goal: Capturing or reproducing appearance of sub-pixel details

• Various tools for filtering various geometric scales

Texture Maps
Pre-Filtering

Super-Sampled
G-Buffer/Shading

Super-Sampled
visibility

MIP-mapping

SSAA (sample-rate)

Image-space

FXAA/MLAA…

Image-space +
Time

TAA

Pre-filtering Runtime sampling Post-filtering

Multi-Sampled
G-Buffer/Shading

MSAA (fragment-rate)

Geometric

coverage +

depth testing

Image-space
pre-filtering

AGAA

Dynamic pre-filtering

LI
G

H
TI

N
G

AGAA Pipeline: (Very) High-Level View

Super-sampled

G-Buffer

SSAA/MSAA
Raster

Per-aggregate averaged

surface + shading attributes

Pre-filtering

Final shaded

pixel color

Lighting

What about pre-filtered shading ?

Lighting Pre-Filtered Aggregates

Goal: Approximate average reflectance over an aggregate’s
footprint

Independently pre-filtering the inputs of the shading function for
each aggregate

• Inspired by texture-space and voxel-space pre-filtering schemes
• Attributes decorrelation assumption
• Far-field assumption

Per-aggregate statistical information:
• Average most shading parameters
• Build a Normal Distribution Function (NDF)
• Average attenuation from shadowing

Image courtesy of Kaplanyan2016

Far-field assumption

Standard UE4 Shading Model

Restricted our investigation to the “Standard” shading model:
Diffuse BRDF: Lambertian
Specular BRDF: GGX/Trowbridge-Reitz

Pre-filtering schemes for GGX:
• [Toksvig 2005]: Isotropic NDF, but cheap

Converting Phong specular exponent to Roughness

• SGGX [Heitz 2015] (Spherical GGX): Anisotropic NDF
Represented as an ellipsoid, works on full spherical domain

Lambertian: Analytic approx. using Toksvig
[Baker and Hill 2012]

AGAA Pipeline: (Very) High-Level View

Per-aggregate averaged

surface + shading attributes

Pre-filtering

How are aggregate created ?

Pixel

Pixel frustum

Aggregate Creation: Clustering

1: MSAA/SSAA

G-Buffer Rasterization

Pixel frustum

Pixel

Pixel frustum

2: Clustering

Aggregate 0

Aggregate 1

Clustering samples:

Cross-primitives +

Disjoint surfaces

Goal: Minimize shading

errors due to correlated

attributes [Bruneton and Neyret 2012]

Distance metric:

- Shading Model

- Normal

- Depth/Position

Pixel

Pixel frustum

Pixel

Pixel frustum

Aggregate Creation: Aggregation

3: Aggregation

Pre-filtering

Pixel frustum

Pixel

Pixel frustum

2: Clustering

Aggregate 0

Aggregate 1

Aggregate 0

Aggregate 1

1: MSAA/SSAA

G-Buffer Rasterization

Pixel

Pixel frustum

Pixel

Pixel frustum

Aggregate Creation

3: Aggregation

Pre-filtering

Pixel frustum

Pixel

Pixel frustum

2: Clustering

Aggregate 0

Aggregate 1

Aggregate 0

Aggregate 1

Implemented in the

tiled-deferred shading pass

1: MSAA/SSAA

G-Buffer Rasterization

P
ix

e
l

[8x Samples]

G-Buffer 8xAA or 4xAA

Normal

BaseColor (Albedo)

Metallic

Specular

Roughness

Shading Model ID

Emissive

[2x Aggregates]

Aggregate Attributes 2x/pixel

Normal Distrib. (NDF)

Avg DiffuseColor

Avg SpecularColor

Shading Model ID

P
ix

e
l

Avg WS Position

Metadata 1x/pixel

SampleToAggregate Mappping

Depth

2: Aggregation

Pre-filtering

…

…

1: Clustering

Scene courtesy of Quixel and Epic Games

Non-normal mapped mesh

with high geometric curvature

Normal-map details

Artifacts with no G-Buffer sample NDF pre-filtering4xAGAA

AGAA Pipeline: (Very) High-Level View

Supersampled

G-Buffer

High-quality sample

Pre-Filtering G-Buffer Samples

[Toksvig 2005] normal-map pre-filtering

[Kaplanyan 2016] filtering geometric curvature

Kaplanyan’s Curvature Filtering

float3 GetAgaaAverageQuadNormal(FMaterialPixelParameters MaterialParameters, float3 N)

{

int2 PixelPos = MaterialParameters.SVPosition.xy;

N -= ddx_fine(N) * (float(PixelPos.x & 1) - 0.5);

N -= ddy_fine(N) * (float(PixelPos.y & 1) - 0.5);

return N;

}

float2 GetAgaaKaplanyanFilteringRect(FMaterialPixelParameters MaterialParameters)

{

// Shading frame

float3 T = MaterialParameters.TangentToWorld[0];

float3 ShFrameN = normalize(MaterialParameters.TangentToWorld[2]);

float3 ShFrameS = normalize(T - ShFrameN * dot(ShFrameN, T));

float3 ShFrameT = cross(ShFrameN, ShFrameS);

// Use average quad normal as a half vector

float3 hppW = GetAgaaAverageQuadNormal(MaterialParameters, ShFrameN);

// Compute half vector in parallel plane

hppW /= dot(ShFrameN, hppW);

float2 hpp = float2(dot(hppW, ShFrameS), dot(hppW, ShFrameT));

// Compute filtering region

float2 rectFp = (abs(ddx_fine(hpp)) + abs(ddy_fine(hpp))) * 0.5f;

// For grazing angles where the first-order footprint goes to very high values

rectFp = min(View.AgaaKaplanyanRoughnessMaxFootprint, rectFp);

return rectFp;

}

float GetAgaaKaplanyanRoughness(FMaterialPixelParameters MaterialParameters, float InRoughness)

{

float2 rectFp = GetAgaaKaplanyanFilteringRect(MaterialParameters);

// Covariance matrix of pixel filter's Gaussian (remapped in roughness units)

// Need to x2 because roughness = sqrt(2) * pixel_sigma_hpp

float2 covMx = rectFp * rectFp * 2.f * View.AgaaKaplanyanRoughnessBoost;

// Since we have an isotropic roughness to output, we conservatively take the largest edge of the filtering rectangle

float maxIsoFp = max(covMx.x, covMx.y);

return sqrt(InRoughness * InRoughness + maxIsoFp); // Beckmann proxy convolution for GGX

}

Kaplanyan’s Curvature Filtering

4xAGAA G-Buffer NDF PreFiltering=OFF

Scene courtesy of Quixel and Epic Games

4xAGAA G-Buffer NDF PreFiltering=ON

Scene courtesy of Quixel and Epic Games

VRAM Overhead for 4xAGAA

AGAA Pass Render Target Video Memory Bytes

AGAA Clustering AGAA MetaData WxHx1 R16_UINT

AGAA Lighting & Reflections Per-Aggregate Lit Colors WxHx2 R11G11B10F

Merge Emissive Per-Pixel Lit Color + Emissive WxHx4 R11G11B10F

Total VRAM overhead:

26 bytes / pixel

Resolve

• Emissive kept per-sample

• Always resolving tone-mapped colors [Karis2014]

Results
Image quality and performance

4x AGAA

4xSSAA

Scene courtesy of Quixel and Epic Games

4x AGAA

4xAGAA

Scene courtesy of Quixel and Epic Games

4xTAA

Scene courtesy of Epic Games

4xAGAA

Scene courtesy of Epic Games

4xSSAA

Scene courtesy of Epic Games

4x AGAA

8xSSAA

Scene courtesy of Quixel and Epic Games

4x AGAA

8xAGAA

Scene courtesy of Quixel and Epic Games

ReflectionEnvironment=ON

Scene courtesy of Quixel and Epic Games

Disabling ReflectionEnvironment (this pass is not optimized yet)…

ReflectionEnvironment=OFF

Scene courtesy of Quixel and Epic Games

4xAGAA Performance

GPU Time (ms) 4xSSAA 4xAGAA 4xAGAA/4xSSAA

Z PrePass 0.13 0.13 1.0x

GBuffer Fill 1.26 1.26 1.0x

Lighting 4.71 2.85 1.65x

PostProcessing 0.55 0.55 1.0x

Frame 6.65 4.79 1.39x

GPU times measured in 1080p on GTX 1080 (8GB) @ 1607 Mhz

Using the accurate Vis_Smith function (not Vis_SmithJointApprox)

MSAA
The cost of better performance

Why not MSAA ? Complex material graphs

Artist-controlled material
definitions

• Non-linear operations

• Needs to be supersampled

Making MSAA More Feasible

Using MSAA in the GBuffer fill can produce great performance
boosts (~2x) over super-sampling

However, per-fragment shading can introduce artifacts if the pixel
shader is using discard or non-linear maths

Proposed solution:
1. Encourage artists to avoid non-linear material nodes (pow, clamp, …)

2. Selectively super-sample the GBuffer attributes that have nonlinearities

Limitations

AGAA is speeding up only the lighting pass

Non-standard UE shading models not fully tested yet

More than 2 shading model IDs / pixel untested

Conclusion

AGAA speeds up super-sampled lighting
4x AGAA lighting is 1.7x faster than 4x SSAA

8x AGAA lighting is 2.6x faster than 8x SSAA

Can be combined with TAA or used alone

Still ongoing work

Thanks

Natalya Tatarchuk

Aaron Lefohn

Jon Jansen

Anton Kaplanyan

Questions?

References

[TVCG 2016] Cyril Crassin, Morgan McGuire, Kayvon Fatahalian, Aaron Lefohn,
"Aggregate G-Buffer Anti-Aliasing - Extended Version", TVCG, 2016.

http://research.nvidia.com/sites/default/files/publications/AGAA_Extended_TVCG2016_AuthorsVersion.pdf

[Kaplanyan 2016] A. Kaplanyan, S. Hill, A. Patney & A. Lefohn, “Filtering Distributions of Normals
for Shading”, HPG 2016.

[Heitz 2015] Eric Heitz, Jonathan Dupuy, Cyril Crassin and Carsten Dachsbacher, “The SGGX
Microflake Distribution“, SIGGRAPH 2015.

[I3D 2015] Cyril Crassin, Morgan McGuire, Kayvon Fatahalian, Aaron Lefohn,
"Aggregate G-Buffer Anti-Aliasing“, I3D, 2015.

[Karis 2014] Brian Karis (Epic), “High-Quality Temporal Super-Sampling”, SIGGRAPH 2014.

[Baker and Hill 2012] Stephen Hill (Ubisoft) & Dan Baker (Firaxis), “Rock-Solid Shading: Image
Stability without Sacrificing Detail”, GDC 2012.

[Bruneton and Neyret 2012] Bruneton & Neyret, “A Survey of Non-linear Pre-filtering Methods for
Efficient and Accurate Surface Shading”, TVCG 2011.

[Toksvig 2005] Toksvig, “Mipmapping normal maps”, Journal of Graphics Tools 10, 2005.

http://research.nvidia.com/sites/default/files/publications/AGAA_Extended_TVCG2016_AuthorsVersion.pdf

