Correlation-Aware Semi-Analytic Visibility for Antialiased Rendering

Cyril Crassin, Chris Wyman, Morgan McGuire, Aaron Lefohn

1 spp

1/4 RESOLUTION

256x MSAA

Beam rasterization pipeline

Alpha-Composition

 $\alpha_{A} \text{ OVER } \alpha_{B} = P(A \cup B)$ $= P(A) + P(B) - P(A \cap B)$ $= P(A) + P(B) - P(A) \times P(B) = P(A) + P(B) \times (1-P(A))$ $= \alpha_{A} + \alpha_{B} \times (1 - \alpha_{A})$ *Visible contribution of B*

Fractional coverage

Probability of coverage

 $\alpha_{A} = \frac{Area(A)}{Area(Pixel)}$

 $\alpha_A = P(A)$ in [0,1]

Assuming A, B statistically independent (<u>uncorrelated</u>): $P(A \cap B) = P(A) \times P(B)$

A OVER B

Decorrelation

"Some"-correlation

Full-correlation: P(A | B) = 1, $P(A \cap B) = P(B)^*$ $\rightarrow P(A \cup B) = P(A)$

Anti-correlation: P(A | B) = 0, P(B | A) = 0, $P(A \cap B) = 0$ $\rightarrow P(A \cup B) = P(A) + P(B)$

[if P(A)>P(B)]

Structured geometry Correlated coverages

Correlation tracking

Localization bitmasks: Track the spatial location of coverage NOT Coverage masks ! **32-bit Mask Jittered positions** (Hammersley sequence)

0

0

0

Generating *localization* masks

Lookup table fetches:

(2D Table (Theta, r), 16KB)

32-bit Mask Jittered positions (Hammersley sequence)

Tiny, zero-coverage triangles:

0

(3)

Zero generated samples

Correlation tracking

Localization bitmasks: Track the spatial location of coverage

Correlation tracking

Localization bitmasks: Track the spatial location of coverage

Potentially overlapping regions

- Assuming decorrelation → OVER blending (multiplicative composition)
- Use ad-hoc *fuzziness* heuristic → Transition ADD <-> OVER
 - $\frac{|M_A|}{\alpha_A} \times sadp(A, B)$

Surface Intersections

 $\bullet \bullet \bullet$

MSAA

MSAA

[1/4 Resolution]

Semi-Analytic

1spp

TAA

256x MSAA

256x MSAA

8x MSAA

Thank You !

Memory consumption

Without compression

- Without color:
- Our approach: 36 Bytes/pixel

MSAA 8x: 24-32 Bytes/pixel

MSAA 32x: 96-128 Bytes/pixel

- With fp16 color:

Our approach: 42 Bytes/pixel MSAA 8x: 72-80 Bytes/pixel MSAA 32x: 288-320 Bytes/pixel

Aggregate / Fragment Visibility rep. (42 Bytes)

- **C** : Color (3x 2B)
- α: Coverage (4B)
- M: Localization Mask (4B)
- S: Depth Slab
 - Plane equation (4x 4B) + thickness (4B)
- Z_{min}, Z_{max}: Depth range (2x 4B)